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10 Abstract—We propose an approach to describe the large-signal behav-
ior of a high electron-mobility transistor (HEMT) by using a multilayered
neural network. To conveniently implement this in standard circuit

15 simulators, we extracted the HEMT’s bias-dependent behavior in terms
of conventional small-signal equivalent-circuit elements. We successfully
represented seven intrinsic elements with a five-layered neural network

20 . . ' 20 (compos_ed of 28 neur.ons) whose inputs are the gate-to-source bidss)

05 1.0 15 20 25 and drain-to-source bias(Vjy.). A “well-trained” neural network shows

excellent accuracy and generates good extrapolations.
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Fig. 6. Plot of measured versus simulated performance of the input return

loss (S11) of the fabricated CFLNA.

I. INTRODUCTION
- «— Measured A large-signal model for an active device, such as a high electron-
Output Retum Loss (dB) Simulated mobility transistor (HEMT), is an essential tool for accurately de-
0 : ; ; 0 signing high-frequency components. Several good models based on
closed-form equations [1], [2] and look-up tables [3] have been
51 -5 proposed. Recently, a third approach using a neural network has
104 10 been reported [4]. The neural-network model is an intermediate
approach between the conventional ones, and accurately models a
154 .15 comparatively small database.
However, this reported neural-network model adopts a three-
-207 -20 layered configuration which requires numerous neurons.
25 25 In this paper, we propose a different multi!ayered neural-network
approach to describe the large-signal behavior of HEMT’s. To con-
-30 . . . -30 veniently implement it on a standard harmonic-balance simulator
0.5 10 1.5 2.0 25 (such as the HP-MDS), we characterized large-signal behavior with
Frequency (GHz) a conventional small-signal equivalent-circuit analysis [5]. The bias-

Fig. 7. Plot of measured versus simulated performance of the input retlﬂﬁpendem_ intrinsic elementS'{s, 1, Cya, Grms Ty Gds) andc_ds) are
loss (So2) of the fabricated CFLNA. then described by a neural network whose inputsiateand V. We

supplied normalized data for the neural network to obtain a learning
convergence and stable extrapolations.
integrated circuit (MM'C) LNA has been fabricated. The measured By experimenting’ we found that a five_|ayered network con-
response agrees well with the simulated performance. Extensfygiration (consisting of only 28 neurons) adequately represents
computer simulation shows that when silicon n-p-n BJT is used, thigven intrinsic elements simultaneously. We used a batch-mode
scheme enables us to make bbth. andGimax points near to 502,  pack-propagation algorithm [6] and adopted this neural network to
in addition to the simultaneous noise and input power matching. several similar devices. The well-trained network displayed excellent
accuracy.
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Fig. 1. Multilayered neural network.
the kth layer are given b
y g y 1.0 —
Ng_1
‘Lf = Z wfjlyffl (2) 08
j=0
and s 06 Measurement range
! @ :
Yy, = —m—— @
Yi 1+ exp(—2F) 04
wherew; ;'s denotes the synaptic weighting factors which indicate 02 L
the relative importance of each inpdn;?’1 from the (& — 1)th :
layer. The adaptability of this neural network is evaluated by using ! | o | |
the discrepancyE (3) between the network outputg” ="' (i = 00 = . -1 o | 2 3 a
1,---, Na—1) and the learning patterng (i = 1,---, Nar—1): Vas
fu Fig. 2. Scaling functi
Ezé Z (y;;Mil _di)2~ (3) 1g. 2. caling tunction.
=1
The weighting factors are iteratively determined by a backvhere subscript (I = 0,---,L — 1) denotes the number of data
propagation algorithm. The correction terms in the iterations apwints, ands denotes the sigmoid function which scales the raw data
given by the following equation: into a convenient range for calculation. For example, the dominant
e ) k1 range ofVy, is always betweeri—V,/5) and 1}, and outside this
buwij (D=n g1 Taowi (1=1) ) range, each element value tends to be saturated addinsThus

7

we defineds (V) significantly varied withV,, in the range of
wherel denotes the loop counter, and the paramejeasda are the  jerest (see Fig. 2). It was gradually saturated outside the particular

learning rate and momentum factor, respectively. measurement range. If the bias voltage exceeded the measurement
range during simulation, the scaling function was supposed to keep
lI. NEURAL NETWORK FOR BlAS-DEPENDENTHEMT's the element value in the vicinity of the rational value. Thus, it is

We characterized the bias-dependent behavior of the HEMT useful for calculation convergence as well as extrapolation.
terms of the intrinsic elements of a conventional small-signal equiv-If we use an individual network to characterize the intrinsic
alent circuit. elements individually, each network structure is simplified. For
The intrinsic element data depending Bn andVy, are obtained example, a description of,, requires a three-layered network
from the S-parameters measurements performed at various bigsnsisting of two neurons for the first layer, five for the second

settings [5]. layer, and one for the third layer. Although the neural network can

We then defined a set of input data vectersind teaching data fit any type of data with a unique network, we desire the simplest
vectorsd for the neural network as structure possible. Through experiments, we found that a five-layered
x=(af ,25,) = {s(Vys,)s s(Vus,) } (4) configuration composed of only 28 neurons adequately represents

d=(dyrdas,- - dry) the seven large-signal parameters simultaneously. Fig. 3 shows our
e Th ; neural network model of an HEMT. We trained this neural network by
= {8[Cas (Vg Vas, )]s s[Ri (Vg Vs, )] using a batch-mode back-propagation algorithm [6] for several similar
coo8[Cas (Vs Vs, )]} (5) devices. In batch-mode back propagation, the network adaptability is

g5y
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Fig. 4. Fitting and predicted results @f,s. The marks are measurements,
and the solid-lines are the fitting results. The predictions were performed for
gds Vge = 0.4 V and V35 = 3.0 V (dashed lines), and the measurements for
these bias settings were obtained after the predictionVy, = 0.4 V,

Vegs =02V, At Vge =00V, X: Vg = =02V, 01 Ve = 04V, &

Cis Ves = =06V, A: Vg = —0.8 V.
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Fig. 3. Five-layered neural network. The areas enclosed by dashed lines are-E' 20.0 HA—Hf—F- === p===== BN Ee {
layers, and the circles are neurons. Input ddta and Vg, are scaled by a E
sigmoid functions(z). The neuron at the bottom of each layer (except the out- > 15.0
put) provides the threshold values. The output layer generates bias-dependent o o -
intrinsic elements for particular bias voltages. Synaptic connections have been | T
omitted in this figure. 5.0 —_'—.—Ti/
0.0 L S m——
] . 0.0 . 1.0 1.5 20 25 3.0
evaluated by the following equation: Vds (V)
1 Ny — ) -~ .
1 e M—1 9 = Fig. 5. Fitting and predicted results gf,. The marks are measurements,
E= 2 Z Z (yi,l —dip)” = Z E; (6)  and the solid lines are the fitting results. The predictions were performed for
=0 =1 =0 Vgs = 0.4 V and V35 = 3.0 V (dashed lines), and the measurements for

Bese bias settings were obtained after the predictionVys = 0.4 V, [

where L denotes the number of bias points. The principal correcti 02V, A Vee = 0.0V, X: Ve = —02 V, & Vs = —0.4 V, m;

term in the iterations (3) is given by the following equation: Vee = 0.6V, A: Ve = —0.8 V.
L—1
OF OF . .
ST = Z 5 kl_l. ) A well-trained neural network can generate stable and valid ele-
Wi i=0 i ment values even for a bias which exceeds the measurement range.

That is, the correction values are accumulated for all combinations
of data points, making batch-mode back propagation effective for V. CONCLUSIONS

finding the optimum convergence for all combinations of data. We e have reported an approach to describe the large-signal behavior
used a learning ratg of 0.8, and a momentum facter of 0.9 for  of an HEMT by using a multilayered neural network. For future
the training. implementation on commercially available simulators, we represented
the bias-dependent behavior of the HEMT in terms of conventional
IV. MEASUREMENT small-signal equivalent-circuit elements.

Using the neural network obtained in the Section IV, we charac-\We found that a five-layered configuration composed of only
terized the intrinsic elements of an HEMT with a 0.26+long and 28 neurons will represent seven bias-dependent intrinsic elements
100um-wide gate. Fig. 4 shows the fitting results .. The marks from Vi and Vo simultaneously. We adopted this neural network
denote actual data, and the solid lines are values calculated using/#8 the batch-mode back-propagation algorithm and obtained close
neural network. The rms error under 4% between the measured ag§eement with the actual data. Furthermore, we calculated element
calculated values can be achieved for individual elements. values at several bias points outside the measurement range and

In addition, we calculated the element values of this HEMT witPtained a good extrapolation. _ _
several bias points. These were excluded from the fitting calculationsThe multilayered neural network can describe all of the large-signal
Fig. 4 also compares the calculatéd. values to the actual data elements with a configuration simpler than any previously reported.
subsequently obtained. In this figure, the marksiat = 0.4 V
(Vas = 0.0 t0 3.0 V), and Va. = 3.0 V (Vi = —0.8 t0 0.4 V) REFERENCES
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Fig. 1. A transmit/receive module. (a) Functional block diagram. (b) Signal

flow chart

Novel Microstrip-Line Directional Filters
Il. MICROWAVE DIRECTIONAL FILTERS

Stanislaw Rosloniec and Tahar Habib WITH TwO AND FOUR P-I-N DIODES

The microstrip line configurations of the filters being investigated
are shown in Fig. 2. These filters are composed of two microstrip-
line resonators, two or four p-i-n diodes, and a 1§Mhase-reversal
unit which is placed at the center of one resonator. Near this

Abstract—This paper presents two new structures of four-port mi-
crowave directional filters incorporating microstrip-line resonators, uni-
planar 180° phase-reversal units, and two or four identical p-i-n diodes.

These filters provide substantially improved frequency characteristics

compared to the conventional constructions. The unique feature of them
is that they ensure high-level isolation independent of frequency between
opposite ports. Due to this electrical property the proposed filters may be

suitable for some pulse-radar applications.

Index Terms—Microstrip-line directional filters, microwave filters, T/R
modules.

|. INTRODUCTION

center the standing wave forms a short-circuit node. Therefore, the
equivalent inductanceé of this unit [Fig. 3(a) and (b)], have to

be especially small. This requirement explains why in the proposed
filters relatively wide and short copper strips are used as electrical
bonds. A constructional view of the proposed design, using the
slotline hollow patches for broad-band open conditions, is illustrated
in Fig. 3(c) and (d) [4], [5]. The second resonator including the°180
phase-reversal unit should be electrically uniform over the entire
length, so that at any cross section its characteristic impedance will be
the same. Thus, the finite ground plane of the microstrip line caused

Directional filters are indispensable components of transmit/recei¥ the slotline hollow patches has to be taken into account in the
(T/R) modules (see Fig. 1) used in various communication systerf€sign process.
The conventional nonadjustable structures of them are comprehenlhe first filter (DF-2) presented in Fig. 2(a) is asymmetric with
sively described in the literature [1]-[3]. These filters, howevefespect to the horizontat—' and verticaly—y' planes, and for
cannot be applied directly in systems with transmit and receif@is reason cannot be analyzed by using the even- and odd-mode
signals of the same or very close frequencies. Furthermore, tH¥gitation method [3], [6]. Consequently, the following numerical
do not ensure perfect isolation independent of frequency betwedgorithm is proposed here for this purpose. The idea of this algorithm
opposite ports marked as 2 and 3 in Fig. 1. Consequently, the receigessimilar to that used in [7]. For any pair of ports, and !,
cannot be sufficiently protected from the transmitter over the requirtite filter DF-2 may be treated as a reciprocal two-port network
frequency range. In order to eliminate the above disadvantages #fgorporating two partial two-portsy; and()«; connected in parallel,
electronically switchable microstrip-line directional filters have bee@s shown in Fig. 4(a). For clarification of further considerations
developed. The construction and electrical performance of these filtls us assume that the scattering paramefars Sis, Sii, and
are the subject of this paper. The validity of the presented theoretiéak Of the filter are evaluated. In this case, two-pofts; and
results has been confirmed experimentally for the frequency rangeldf: are similar to those shown in Fig. 4(b) and (c). The transfer

0.5-1.5 GHz.
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matrices(ABCD)p and (ABCD)¢ of these circuits can be easily
calculated by multiplying the corresponding matricesBC D) of
the elementary cascade components [8]. When the resulting matrices
(ABCD)p and (ABCD)q are known, then we can evaluate the
admittance matricegY]» and [Y] related to them. The total
mittance matrixY] = [Y]r + [Y]o makes it possible to calculate
the scattering parametef$s being sought. For this purpose we can
use the well-known matrix transformatiofis] — [S], [8], [9]. The
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