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Fig. 6. Plot of measured versus simulated performance of the input return
loss (S11) of the fabricated CFLNA.

Fig. 7. Plot of measured versus simulated performance of the input return
loss (S22) of the fabricated CFLNA.

integrated circuit (MMIC) LNA has been fabricated. The measured
response agrees well with the simulated performance. Extensive
computer simulation shows that when silicon n-p-n BJT is used, this
scheme enables us to make both�opt andGmax points near to 50
,
in addition to the simultaneous noise and input power matching.
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A Large-Signal Characterization of an HEMT
Using a Multilayered Neural Network

Kazuo Shirakawa, Masahiko Shimiz, Naofumi Okubo,
and Yoshimasa Daido

Abstract—We propose an approach to describe the large-signal behav-
ior of a high electron-mobility transistor (HEMT) by using a multilayered
neural network. To conveniently implement this in standard circuit
simulators, we extracted the HEMT’s bias-dependent behavior in terms
of conventional small-signal equivalent-circuit elements. We successfully
represented seven intrinsic elements with a five-layered neural network
(composed of 28 neurons) whose inputs are the gate-to-source bias(Vgs)
and drain-to-source bias(Vds). A “well-trained” neural network shows
excellent accuracy and generates good extrapolations.

Index Terms—HEMT, large-signal model, neural network.

I. INTRODUCTION

A large-signal model for an active device, such as a high electron-
mobility transistor (HEMT), is an essential tool for accurately de-
signing high-frequency components. Several good models based on
closed-form equations [1], [2] and look-up tables [3] have been
proposed. Recently, a third approach using a neural network has
been reported [4]. The neural-network model is an intermediate
approach between the conventional ones, and accurately models a
comparatively small database.

However, this reported neural-network model adopts a three-
layered configuration which requires numerous neurons.

In this paper, we propose a different multilayered neural-network
approach to describe the large-signal behavior of HEMT’s. To con-
veniently implement it on a standard harmonic-balance simulator
(such as the HP-MDS), we characterized large-signal behavior with
a conventional small-signal equivalent-circuit analysis [5]. The bias-
dependent intrinsic elements (Cgs, Ri, Cgd, gm, � , gds, andCds) are
then described by a neural network whose inputs areVgs andVds. We
supplied normalized data for the neural network to obtain a learning
convergence and stable extrapolations.

By experimenting, we found that a five-layered network con-
figuration (consisting of only 28 neurons) adequately represents
seven intrinsic elements simultaneously. We used a batch-mode
back-propagation algorithm [6] and adopted this neural network to
several similar devices. The well-trained network displayed excellent
accuracy.

II. M ULTILAYERED NEURAL NETWORK

Fig. 1 shows a standard multilayered (the number of layers is
M ) neural network. In this figure, each circle is a neuron, and the
boxes enclosing several neurons are the layers. Thekth layer includes
(Nk + 1) neurons. At the far left is theinput layer, and at the far
right is theoutput layer. The input and output of theith neuron in

Manuscript received December 29, 1995; revised May 19, 1997.
K. Shirakawa, M. Shimiz, and N. Okubo are with the Fujitsu Laboratories

Ltd., Nakahara-ku, Kawasaki, 211 Japan.
Y. Daido is with the Kanazawa Institute of Technology, Ishikawa, 921

Japan.
Publisher Item Identifier S 0018-9480(97)06068-7.

0018–9480/97$10.00 1997 IEEE



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 9, SEPTEMBER 1997 1631

Fig. 1. Multilayered neural network.

the kth layer are given by
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wherewi;j ’s denotes the synaptic weighting factors which indicate
the relative importance of each inputhk�1j from the (k � 1)th
layer. The adaptability of this neural network is evaluated by using
the discrepancyE (3) between the network outputsyM�1i (i =

1; � � � ; NM�1) and the learning patternsdi (i = 1; � � � ; NM�1):

E = 1

2

N

i=1

(y
M�1
i � di)

2
: (3)

The weighting factors are iteratively determined by a back-
propagation algorithm. The correction terms in the iterations are
given by the following equation:
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wherel denotes the loop counter, and the parameters� and� are the
learning rate and momentum factor, respectively.

III. N EURAL NETWORK FOR BIAS-DEPENDENT HEMT’s

We characterized the bias-dependent behavior of the HEMT in
terms of the intrinsic elements of a conventional small-signal equiv-
alent circuit.

The intrinsic element data depending onVgs andVds are obtained
from the S-parameters measurements performed at various bias
settings [5].

We then defined a set of input data vectorsxxx and teaching data
vectorsddd for the neural network as

xxx =(x
0
1;l; x

0
2;l) = fs(Vgs ); s(Vds )g (4)

ddd =(d1;l; d2;l; � � � ; d7;l)

= fs[Cgs(Vgs ; Vds )]; s[Ri(Vgs ; Vds )];

� � � ; s[Cds(Vgs ; Vds )]g (5)

Fig. 2. Scaling function.

where subscriptl (l = 0; � � � ; L � 1) denotes the number of data
points, ands denotes the sigmoid function which scales the raw data
into a convenient range for calculation. For example, the dominant
range ofVgs is always between(�Vp=5) and Vp, and outside this
range, each element value tends to be saturated againstVgs. Thus
we defineds (Vgs) significantly varied withVgs in the range of
interest (see Fig. 2). It was gradually saturated outside the particular
measurement range. If the bias voltage exceeded the measurement
range during simulation, the scaling function was supposed to keep
the element value in the vicinity of the rational value. Thus, it is
useful for calculation convergence as well as extrapolation.

If we use an individual network to characterize the intrinsic
elements individually, each network structure is simplified. For
example, a description ofCgs requires a three-layered network
consisting of two neurons for the first layer, five for the second
layer, and one for the third layer. Although the neural network can
fit any type of data with a unique network, we desire the simplest
structure possible. Through experiments, we found that a five-layered
configuration composed of only 28 neurons adequately represents
the seven large-signal parameters simultaneously. Fig. 3 shows our
neural network model of an HEMT. We trained this neural network by
using a batch-mode back-propagation algorithm [6] for several similar
devices. In batch-mode back propagation, the network adaptability is
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Fig. 3. Five-layered neural network. The areas enclosed by dashed lines are
layers, and the circles are neurons. Input dataVgs andVds are scaled by a
sigmoid functions(x). The neuron at the bottom of each layer (except the out-
put) provides the threshold values. The output layer generates bias-dependent
intrinsic elements for particular bias voltages. Synaptic connections have been
omitted in this figure.

evaluated by the following equation:
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whereL denotes the number of bias points. The principal correction
term in the iterations (3) is given by the following equation:
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That is, the correction values are accumulated for all combinations
of data points, making batch-mode back propagation effective for
finding the optimum convergence for all combinations of data. We
used a learning rate� of 0.8, and a momentum factor� of 0.9 for
the training.

IV. M EASUREMENT

Using the neural network obtained in the Section IV, we charac-
terized the intrinsic elements of an HEMT with a 0.25-�m-long and
100-�m-wide gate. Fig. 4 shows the fitting results forCgs. The marks
denote actual data, and the solid lines are values calculated using the
neural network. The rms error under 4% between the measured and
calculated values can be achieved for individual elements.

In addition, we calculated the element values of this HEMT with
several bias points. These were excluded from the fitting calculations.
Fig. 4 also compares the calculatedCgs values to the actual data
subsequently obtained. In this figure, the marks atVgs = 0:4 V
(Vds = 0:0 to 3:0 V), and Vds = 3:0 V (Vgs = �0:8 to 0:4 V)
denote data measured afterwards, and the dashed lines denote values
predicted by the neural network. Fig. 5 shows the same in the case
of gm.

Fig. 4. Fitting and predicted results ofCgs. The marks are measurements,
and the solid-lines are the fitting results. The predictions were performed for
Vgs = 0:4 V and Vds = 3:0 V (dashed lines), and the measurements for
these bias settings were obtained after the prediction.
: Vgs = 0:4 V, :
Vgs = 0:2 V, 4: Vgs = 0:0 V, �: Vgs = �0:2 V, �: Vgs = �0:4 V, :
Vgs = �0:6 V, 4: Vgs = �0:8 V.

Fig. 5. Fitting and predicted results ofgm. The marks are measurements,
and the solid lines are the fitting results. The predictions were performed for
Vgs = 0:4 V and Vds = 3:0 V (dashed lines), and the measurements for
these bias settings were obtained after the prediction.
: Vgs = 0:4 V, :
Vgs = 0:2 V, 4: Vgs = 0:0 V, �: Vgs = �0:2 V, �: Vgs = �0:4 V, :
Vgs = �0:6 V, 4: Vgs = �0:8 V.

A well-trained neural network can generate stable and valid ele-
ment values even for a bias which exceeds the measurement range.

V. CONCLUSIONS

We have reported an approach to describe the large-signal behavior
of an HEMT by using a multilayered neural network. For future
implementation on commercially available simulators, we represented
the bias-dependent behavior of the HEMT in terms of conventional
small-signal equivalent-circuit elements.

We found that a five-layered configuration composed of only
28 neurons will represent seven bias-dependent intrinsic elements
from Vgs and Vds simultaneously. We adopted this neural network
with the batch-mode back-propagation algorithm and obtained close
agreement with the actual data. Furthermore, we calculated element
values at several bias points outside the measurement range and
obtained a good extrapolation.

The multilayered neural network can describe all of the large-signal
elements with a configuration simpler than any previously reported.
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Novel Microstrip-Line Directional Filters

Stanislaw Rosloniec and Tahar Habib

Abstract—This paper presents two new structures of four-port mi-
crowave directional filters incorporating microstrip-line resonators, uni-
planar 180� phase-reversal units, and two or four identical p-i-n diodes.
These filters provide substantially improved frequency characteristics
compared to the conventional constructions. The unique feature of them
is that they ensure high-level isolation independent of frequency between
opposite ports. Due to this electrical property the proposed filters may be
suitable for some pulse-radar applications.

Index Terms—Microstrip-line directional filters, microwave filters, T/R
modules.

I. INTRODUCTION

Directional filters are indispensable components of transmit/receive
(T/R) modules (see Fig. 1) used in various communication systems.
The conventional nonadjustable structures of them are comprehen-
sively described in the literature [1]–[3]. These filters, however,
cannot be applied directly in systems with transmit and receive
signals of the same or very close frequencies. Furthermore, they
do not ensure perfect isolation independent of frequency between
opposite ports marked as 2 and 3 in Fig. 1. Consequently, the receiver
cannot be sufficiently protected from the transmitter over the required
frequency range. In order to eliminate the above disadvantages two
electronically switchable microstrip-line directional filters have been
developed. The construction and electrical performance of these filters
are the subject of this paper. The validity of the presented theoretical
results has been confirmed experimentally for the frequency range of
0.5–1.5 GHz.
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(a)

(b)

Fig. 1. A transmit/receive module. (a) Functional block diagram. (b) Signal
flow chart

II. M ICROWAVE DIRECTIONAL FILTERS

WITH TWO AND FOUR P-I-N DIODES

The microstrip line configurations of the filters being investigated
are shown in Fig. 2. These filters are composed of two microstrip-
line resonators, two or four p-i-n diodes, and a 180� phase-reversal
unit which is placed at the center of one resonator. Near this
center the standing wave forms a short-circuit node. Therefore, the
equivalent inductancesL of this unit [Fig. 3(a) and (b)], have to
be especially small. This requirement explains why in the proposed
filters relatively wide and short copper strips are used as electrical
bonds. A constructional view of the proposed design, using the
slotline hollow patches for broad-band open conditions, is illustrated
in Fig. 3(c) and (d) [4], [5]. The second resonator including the 180�

phase-reversal unit should be electrically uniform over the entire
length, so that at any cross section its characteristic impedance will be
the same. Thus, the finite ground plane of the microstrip line caused
by the slotline hollow patches has to be taken into account in the
design process.

The first filter (DF-2) presented in Fig. 2(a) is asymmetric with
respect to the horizontalx–x0 and verticaly–y0 planes, and for
this reason cannot be analyzed by using the even- and odd-mode
excitation method [3], [6]. Consequently, the following numerical
algorithm is proposed here for this purpose. The idea of this algorithm
is similar to that used in [7]. For any pair of ports,k and l,
the filter DF-2 may be treated as a reciprocal two-port network
incorporating two partial two-portsPkl andQkl connected in parallel,
as shown in Fig. 4(a). For clarification of further considerations
let us assume that the scattering parametersS11, S14, S41, and
S44 of the filter are evaluated. In this case, two-portsP14 and
Q14 are similar to those shown in Fig. 4(b) and (c). The transfer
matrices(ABCD)P and (ABCD)Q of these circuits can be easily
calculated by multiplying the corresponding matrices(ABCD) of
the elementary cascade components [8]. When the resulting matrices
(ABCD)P and (ABCD)Q are known, then we can evaluate the
admittance matrices[Y ]P and [Y ]Q related to them. The total
admittance matrix[Y ] = [Y ]P + [Y ]Q makes it possible to calculate
the scattering parametersS being sought. For this purpose we can
use the well-known matrix transformations[Y ] ! [S], [8], [9]. The
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